Generalization of Strok-Szymański theorem

Taras Banakh, Zdzisław Kosztołowicz & Sławomir Turek

Department of Mathematics Jan Kochanowski University in Kielce

Winter School, Hejnice, 26-01-2013 - 2-02-2013

Motivation

Space X is supercompact if exists a subbase s.t for every open covering of X consisting of subbasic sets there is a 2-element subcover.

Alexander lemma implies that every supercompact space is compact

Definition

A family of sets \mathcal{L} is called linked if any two members of this family have nonempty intersection.

A family of sets \mathcal{L} is called binary if each linked subfamily of \mathcal{L} has nonempty intersection.

Lemma

A space X is supercompact iff it possesses a binary subbbase for closed sets.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Motivation

Space X is supercompact if exists a subbase s.t for every open covering of X consisting of subbasic sets there is a 2-element subcover.

Alexander lemma implies that every supercompact space is compact

Definition

A family of sets \mathcal{L} is called linked if any two members of this family have nonempty intersection.

A family of sets \mathcal{L} is called binary if each linked subfamily of \mathcal{L} has nonempty intersection.

Lemma

A space X is supercompact iff it possesses a binary subbbase for closed sets.

Motivation

Space X is supercompact if exists a subbase s.t for every open covering of X consisting of subbasic sets there is a 2-element subcover.

Alexander lemma implies that every supercompact space is compact

Definition

A family of sets \mathcal{L} is called linked if any two members of this family have nonempty intersection.

A family of sets \mathcal{L} is called binary if each linked subfamily of \mathcal{L} has nonempty intersection.

Lemma

A space X is supercompact iff it possesses a binary subbbase for closed sets.

Theorem (Strok, Szymański 1975)

Every metric compact space is supercompact.

A b

Definition

Let \mathcal{P} be a collection of subsets of a topological space X. \mathcal{P} is called *k*-network if for any compact subset K of space X and its open neighbourhood U exists a finite subfamily $\mathcal{P}' \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{P} \subset U$.

Definition

A space X is called \aleph -space if it possesses a σ -locally finite k-network.

Theorem (Foged 1984)

The following are equivalent for a regular space X:

- () X has a σ -locally finite k-network,
- 2 X has a σ -discrete k-network.

Definition

Let \mathcal{P} be a collection of subsets of a topological space X. \mathcal{P} is called *k*-network if for any compact subset K of space X and its open neighbourhood U exists a finite subfamily $\mathcal{P}' \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{P} \subset U$.

Definition

A space X is called \aleph -space if it posseses a σ -locally finite k-network.

Theorem (Foged 1984)

The following are equivalent for a regular space X:

- **1** X has a σ -locally finite k-network,
- **2** X has a σ -discrete k-network.

4 D N 4 B N 4 B N 4 B N

Question

Does every \aleph -space possess a σ -discrete binary (in finite sense) *k*-network for closed sets?

Basic facts

Lemma

For every family \mathcal{B} of finite order in X exists an essential map $\lambda \colon X \to K$ onto a finite dimensional complex K such that

$$\lambda(\bigcap_{i=1}^{n} B_{i}) = \bigcap_{i=1}^{n} \lambda(B_{i})$$

for all $n \in \omega$ and for all $B_1, \ldots, B_n \in \mathcal{B}$.

Lemma

For every finite dimensional complex K and any finite family A of subcomplexes of K and any linked finite non-empty family B of closed stars of the second barycentric subdivision we have

$(\forall A \in \mathcal{A})(\forall B \in \mathcal{B})(A \cap B \neq \emptyset \Rightarrow \bigcap \mathcal{A} \cap \bigcap \mathcal{B} \neq \emptyset$

Basic facts

Lemma

For every family \mathcal{B} of finite order in X exists an essential map $\lambda \colon X \to K$ onto a finite dimensional complex K such that

$$\lambda(\bigcap_{i=1}^{n} B_{i}) = \bigcap_{i=1}^{n} \lambda(B_{i})$$

for all $n \in \omega$ and for all $B_1, \ldots, B_n \in \mathcal{B}$.

Lemma

For every finite dimensional complex K and any finite family A of subcomplexes of K and any linked finite non-empty family B of closed stars of the second barycentric subdivision we have

$$(\forall A \in \mathcal{A})(\forall B \in \mathcal{B})(A \cap B \neq \emptyset \Rightarrow \bigcap \mathcal{A} \cap \bigcap \mathcal{B} \neq \emptyset)$$

Lemma

If $f X \to Y$ is a map onto Y and \mathcal{B} is a binary collection in Y, then $f^{-1}(\mathcal{B}) = \{f^{-1}(Z) \colon Z \in \mathcal{B}\}$ is a binary collection.

4 6 1 1 4

Main result

Theorem

Every normally \aleph -space possesses σ -discrete, binary, closed *k*-network.

• • • • • • • • • • •